首页> 外文OA文献 >A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature
【2h】

A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature

机译:室温下基于pH控制的柠檬酸盐的简便还原方法制备金纳米颗粒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.
机译:使用柠檬酸盐还原法合成金纳米粒子的研究已经重新进行。采用简化的室温方法进行标准Turkevich合成,可获得相当单分散的金纳米颗粒。探索了初始pH值与反应物浓度比的作用,以控制Au纳米粒子的尺寸。已经使用紫外可见光谱和透射电子显微镜(TEM)研究了粒度分布。在5的最佳pH值下,获得的金纳米颗粒具有高度的单分散性和球形形状,并且具有较窄的尺寸分布(在520 nm处具有清晰的表面等离激元)。对于其他pH条件,颗粒是不均匀且多分散的,由于聚集和较大的粒径分布,导致等离激元峰出现红移。室温方法导致金纳米颗粒的高度稳定的“胶体”悬浮液。通过吸收光谱的稳定性测试表明一个月没有聚集迹象。通过紫外线吸收研究确定柠檬酸根离子对金离子离子种类的还原速率。因此,使用结合了成核,生长和聚集过程的理论模型,可以预测各种条件下纳米颗粒的大小。更快的还原速度可产生更好的尺寸分布,以优化pH和反应物浓度。该模型涉及通过离散化技术求解人口平衡方程,以不断发展粒度分布。由模拟估算的粒径(13至25 nm)接近于实验粒径(10至32 nm),并证实了在300和373 K(典型的Turkevich反应)下反应过程的相似性。因此,将实验测得的金离子离子消失的速率代入理论模型,使我们能够捕获异常的实验观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号